
Overview Of COOL

1-8 COOL User’s Manual

Pair<Ktype,Vtype>
Range

Range<Type>
Rational
Complex
Bignum
Generic

String
Gen_String
Regexp
Vector

Vector<Type>
Association<Ktype,Vtype>

List_Node
List_Node<Type>

List
List<Type>

Date_Time
Timer
Bit_Set
Exception

Warning
Error

System_Error
Verify_Error

Fatal
System_Signal

Excp_Handler
Jump_Handler

Hash_Table
Set
Hash_Table<Key,Value>

Package
Matrix

Matrix<Type>
Queue

Queue<Type>
Random
Stack

Stack<Type>
Symbol
Binary_Node

Binary_Node<Type>
Binary_Tree

Binary_Tree<Type>
AVL_Tree<Type>

N_Node<Type,nchild>
D_Node<Type,nchild>
N_Tree<Type,Node,nchild>

Overview Of COOL

1-7COOL User’s Manual

The Symbol class implements the notion of a symbol that has a name with an optional
value and property list. Symbols are interned into a package, which is a mechanism for
establishing separate name spaces. Because each named symbol is unique within its
own package, the symbol can be used as a dynamic enumeration type and as a run-time
variable. The Package class implements a package as a hash table of named symbols
and includes support for adding, retrieving, updating, and removing symbols at run-
time. It also provides completion and spelling correction on a Symbol name.

Generic Class – The Generic class is inherited by most other COOL classes and ma-
nipulates lists of symbols to manage type information. Generic adds run-time type
checking and object queries, formatted print capabilities, and a describe mechanism to
any derived class. The COOL class macro automatically generates the necessary im-
plementation code for these member functions in the derived classes. A significant
benefit of this common base class is the ability to declare heterogeneous container
classes parameterized over the Generic* type. These classes, combined with the cur-
rent position and parameterized iterator class, lets the programmer manipulate collec-
tions of objects of different types in a simple, efficient manner.

Class Hierarchy 1.10 The COOL class hierarchy implements a rather flat inheritance tree, as opposed

to the deeply nested SmallTalk model. All complex classes are derived from the Ge-
neric class, to facilitate run-time type checking and object query. Simple classes are not
derived from the Generic class due to space efficiency concerns. The parameterized
container classes inherit from a base class that results in shared type-independent code.
This reduces code replication when a particular type of container is parameterized sev-
eral times for different objects in an application. The COOL class hierarchy is shown on
the following page.

Overview Of COOL

1-6 COOL User’s Manual

The Pair<T1,T2> class implements an association between one object and another. The
objects may be of different types, with the first representing the key of the pair and the
second representing the value of the pair. The Association<Ktype,Vtype> class is pri-
vately derived from the Vector<Type> class and implements a collection of pairs. As
above, the first of the pair is called the key and the second of the pair is called the value.
The Hash_Table<Ktype,VType> class implements hash tables of user-specified types
for the key and the value.

Set Classes – The set classes implement two basic data structures for random-access set
operations as parameterized classes, thus allowing the user to customize a generic tem-
plate to create a specific user-defined class. The set classes include Set and Bit_Set.

The Set<Type> class implements random access sets of objects of a user-specified
type. Classical set operations such as union, intersection, and difference are available.
The Set<Type> class is publicly derived from the Hash_Table<KType,VType> class
and is dynamic in nature.

The Bit_Set class implements efficient bit sets. These bits are stored in an arbitrary-
length vector of bytes (unsigned char) large enough to represent the specified number of
elements. Elements can be integers, enumerated values, constant symbols from the enu-
meration package, or any other type of object or expression that results in an integral
value.

Node and Tree Classes – The node and tree classes are a collection of basic data struc-
tures that implement several standard tree data structures as parameterized classes, thus
allowing the user to customize a generic template to create a specific user-defined class.
The node and tree classes include Binary_Node, Binary_Tree, N–Node, D-Node,
AVL_Tree and N–Tree.

The Binary_Node<Type> class implements parameterized nodes for binary trees. The
Binary_Tree<Type> class implements simple, dynamic, sorted sequences in a tree
where each node has two subtree pointers. The AVL_Tree<Type> class implements
height-balanced, dynamic, binary trees. The AVL_Tree<Type> class is publicly de-
rived from the Binary_Tree<Type> class.

The N_Node<Type,nchild> class implements parameterized nodes of a static size for
n-ary trees. The D_Node<Type,nchild> class implements parameterized nodes of a dy-
namic size for n-ary trees. The D_Node<Type,nchild> class is dynamic in the sense that
the number of subtrees allowed for each node is not fixed. D_Node<Type,nchild> uses
the Vector<Type> class to support run-time growth characteristics. Both classes are
parameterized for the type and a number of subtrees that each node may have. In addi-
tion, the constructors for both classes are declared in the public section to allow the user
to create nodes and control the building and structure of an n-ary tree where the ordering
can have a specific meaning, as with an expression tree.

The N_Tree<Node,Type,nchild> class implements n-ary trees, providing the organiza-
tional structure for a tree (collection) of nodes while knowing nothing about the specific
type of node used. N_Tree<Node,Type,nchild> is parameterized over a node type, a
data type, and subtree count, where the node specified must have a data member of the
same Type as the tree class. The subtree count indicates the number of possible subtree
pointers (children) from any given node. Two node classes are provided, but others can
also be written.

Symbol and Package Classes – The Symbol and Package classes implement the basic
COOL symbolic computing support as standard C++ classes. These classes support
efficient and flexible symbolic computing by providing symbolic constants and run-
time symbol objects. Programmers can create symbolic constants at compile-time and
manipulate symbol objects in a package at run-time

Overview Of COOL

1-5COOL User’s Manual

The Regexp class provides a convenient mechanism to present regular expressions for
complex pattern matching and replacement and utilizes the built-in char* data type. The
Gen_String class provides general purpose, dynamic strings for a C++ application
with support for reference counting, delayed copy, and regular expression pattern-
matching. The intent is to provide a sophisticated character string function for the appli-
cation programmer. The Gen_String class combines the functions of the String and
Regexp classes, along with reference counting and self-garbage collection, to provide
advanced character string manipulation.

Number Classes – The Number classes are a collection of numerically oriented classes
that augment the built-in numerical data types to provide such features as extended pre-
cision, range-checked types, and complex numbers. Included are the Random, Com-
plex, Rational, Bignum and Range classes.

The Random class implements five variations of random number generator objects.
The Complex class implements the complex number type for C++ and provides basic
arithmetic and trigonometric functions, conversion to and from built-in types, and sim-
ple arithmetic exception handling. The Rational class implements an extended preci-
sion rational data type for inadequate round-off or truncation results from the built-in
numerical data types. The Bignum class implements near-infinite precision integer
arithmetic. Finally, the parameterized Range<Type> class enables arbitrary user-de-
fined ranges to be implemented in C++ classes. Typically, this is used with other num-
ber classes to select a range of valid values for a particular numerical type.

System Interface Classes – System Interface classes include classes for calculating the
date and time in different time zones and countries and measuring the time duration
between two points in some application program.

The Date_Time class executes time zone–independent date and time functions. This
class also supports all time zones in the world, along with several special cases requiring
alternate handling based upon political or daylight saving time differences. The Timer
class is publicly derived from the Generic class and provides an interface to system
timing. It allows a C++ program to record the time between a reference point (mark)
and now.

Ordered Sequence Classes – The ordered sequence classes are a collection of basic
data structures that implement sequential access data structures as parameterized
classes, thus allowing the user to customize a generic template to create a user-defined
class. The ordered sequence classes include Vector, Stack, Queue and Matrix.

The Vector<Type> class implements single dimension vectors of a user-specified type.
The Stack<Type> class implements a conventional first-in, last-out data structure,
while the Queue<Type> class implements a conventional first-in, first-out data struc-
ture. These two classes each hold a user-specified data type. The Matrix<Type> class
implements two-dimensional arithmetic matrices for a user-specified numeric data
type. The Vector, Stack, and Queue classes can be dynamic in size.

Unordered Sequence Classes – The unordered sequence classes are a collection of ba-
sic data structures that implement random access data structures as parameterized
classes, thus allowing the user to customize a generic template to create a specific user-
defined class. The unordered sequence classes include List, Pair, Association, and
Hash_Table.

The List<Type> class implements Common Lisp style lists providing a collection of
member functions for list manipulation and management. A list consists of a collection
of nodes, each of which contains a reference count, a pointer to the next node in the list,
and a data element of a user-specified type.

Overview Of COOL

1-4 COOL User’s Manual

COOL supplies several sophisticated macros that augment and manipulate the symbol
objects maintained in the COOL global symbol package. The type_of and is_type_of
virtual member functions provide run-time object type query support. Describe and
print member functions provide symbolic and value-oriented output capabilities. In ad-
dition, the typecase macro provides an efficient mechanism analogous to the C++
switch statement for branching, based upon an object’s type. Finally, the class macro
provides a user-extensible system for querying an object to determine if a particular
named function or data member accessor is available or should be created.

Exception Handling 1.8 COOL exception handling is a raise, handle, and proceed mechanism that uses

the COOL symbolic computing capability. When a program encounters an anomaly it
can:

• Represent the anomaly in an exception object

• Announce that the anomaly has occurred by raising the exception

• Provide ways to deal with the anomaly by defining handlers

• Proceed from the anomaly by invoking a handler

The exception handling facility provides an exception class, an exception handler class,
a set of predefined subclasses of the exception class, and a set of predefined exception
handler functions. Each exception subclass is provided a default exception handler
function that is called if no other exception handler is established. The Exception class
inherits from the Generic class to facilitate run-time type checking and query of excep-
tion objects.

Also available are macros that simplify the process of creating exceptions, raising ex-
ceptions, and ignoring raised exceptions. These include the EXCEPTION, RAISE,
STOP, VERIFY, and IGNORE_ERRORS macros.

There are six predefined exception type classes provided as part of COOL. The Excep-
tion class is the base class from which specialized exception subclasses are derived.
Derived from Exception are Warning, System_Signal, System_Error, Fatal, and
Error. These classes are a means of saving the status information that represents a par-
ticular problem or condition, and communicating this information to the appropriate
exception handler.

Classes 1.9 Following is a brief description of the various classes developed for COOL to

supplement the development of C++ applications.

NOTE: All COOL constants such as TRUE and FALSE are defined in the ~COOL/
misc.h header file.

String Classes – The String class provides dynamic, efficient strings for a C++ appli-
cation. The intent is to provide efficient char*-like functionality that frees the program-
mer from worrying about memory allocation and deallocation problems, yet retains the
speed and compactness of a standard char* implementation. All typical string opera-
tions are provided including concatenation, case-sensitive and case-insensitive lexical
comparison, string search, yank, delete, and replacement.

Overview Of COOL

1-3COOL User’s Manual

Symbolic Computing 1.6 COOL symbol and package facilities provide the following capabilities:

• management of error message text

• polymorphic extensions to C++ for object type and contents queries

• support of sophisticated symbolic computing normally unavailable in conventional
languages

A package provides a relatively isolated namespace for various COOL components
called symbols. Each symbol is unique within its own package and can be used as a
dynamic enumeration type. Symbols also can be run-time variables, with the package
acting as a symbol table. Those symbols grouped into a particular package are said to be
owned (interned) by that package. The package system provides logical groupings of
symbols that support relationships established between named objects and the values
they contain. COOL provides several kinds of macros to simplify the usage and ma-
nipulation of symbols and packages.

COOL supports efficient and flexible symbolic computing by providing symbolic con-
stants and run-time symbol objects. You can create symbolic constants at compile-time
and dynamically create and manipulate symbol objects in a package at run-time by us-
ing any of several simple macros or by directly manipulating the objects.

The COOL DEFPACKAGE macro allows for efficient symbol and package manipula-
tion and is used extensively by COOL to implement run-time type checking and type
query. DEFPACKAGE allows an application programmer to declare a package that is
a program-wide database of constant symbols with associated default values and prop-
erties.

A package is created with the DEFPACKAGE macro, and macros for adding and re-
trieving constant symbols in a package are defined with the DEFPACKAGE_SYM-
BOL macro. In COOL, the most common types of packages are made easier to use by
the following four macros:

• enumeration_package

• symbol_package

• text_package

• once_only

Polymorphic 1.7 COOL supports enhanced polymorphic management capabilities

Management with a programmer-selectable collection of macros, classes, symbolic constants, run-

time symbolic objects, and dynamic packages. The Generic class, combined with mac-
ros, symbols, and packages, provides efficient run-time object type checking, object
query, and enhanced polymorphic performance unavailable in the C++ language other-
wise.

Overview Of COOL

1-2 COOL User’s Manual

Macros 1.4 Supplied as part of the library, the COOL macro facilities are an extension to the

standard ANSI C macro preprocessor functions and are portable and compiler-inde-
pendent. The COOL macro facilities support constant symbols, keyword and body ar-
guments, parameterized templates, and complex expression evaluation. Some macros,
such as those that support the parameterized types, are implementations of theoretical
design papers published by Bjarne Stroustrup.

The COOL preprocessor is derived from and based upon the DECUS ANSI C
preprocessor made available by the DEC User’s group in the public domain and sup-
plied on the X11R3 source tape from MIT. The preprocessor complies with the draft
ANSI C specification with the exception that trigraph sequences are not implemented.

The preprocessor was modified to recognize a #pragma defmacro statement to allow a
programmer to define powerful extensions to the C++ language. The proposed draft
ANSI C standard indicates that extensions and changes to the language and features
implemented in a preprocessor and compiler should be made by using the #pragma
statement. The COOL preprocessor follows this recommendation and uses this as the
means by which all macro extensions are made. The #pragma defmacro statement is
the single hook through which features such as the class macro, parameterized tem-
plates, and polymorphic enhancements are implemented. This statement also allows ar-
bitrary filter programs and macro expanders to be run on C++ code fragments passing
through the preprocessor. Note, however, that once a macro is expanded, the resulting
code is conventional C++ 2.0 syntax acceptable to any conforming C++ translator or
compiler.

Parameterized 1.5 Parameterized classes allow a programmer to design and implement a

Templates class template without specifying the data type. The user can then customize the class by

specifying the type when it is used in a program. Parameterized classes can be thought
of as metaclasses in that only one source base needs to be maintained to support numer-
ous variations of a type of class.

An important and useful type of parameterized class is known as a container class. A
container class is a special type of parameterized class where you put objects of a par-
ticular type. A container class that is parameterized over an object does not require the
user to manage memory, activate destructors, and so forth. COOL supplies several com-
mon container class data structures that include support for the notion of a built-in
iterator that maintains a current position in the container object. Multiple iterators into
an instance of a container class are provided by the Iterator<Type> class.

Parameterized classes are handled by the COOL C++ Control program (CCC) which
provides all functions of the original CC program and also supports the COOL
preprocessor and COOL macro language. CCC controls and invokes the various com-
ponents of the compilation process.

Alternately, a declaration macro can be used to instantiate a type-independent
parameterized class for a user-specified type by introducing a new valid type name to
the compiler. An implementation macro defines the member functions of a
parameterized class for a specific type.

1-1COOL User’s Manual

OVERVIEW OF
 COOL

Introduction 1.1 The C++ Object-Oriented Library (COOL) is a collection of classes, objects,

templates, and macros to extend the capabilities of the C++ language for developing
complex problem-solving applications. Significant language features in COOL, such as
parameterized types, symbolic computing, and exception handling, are implemented
with sophisticated C++ macro facilities. These features and facilities are designed to
enhance and improve a programmer’s development capability.

COOL is intended to simplify the programming task by allowing the programmer to
concentrate on the application problem to be solved, not on implementing base data
structures, macros, and classes. In addition, COOL provides a system-independent soft-
ware platform on which applications are built. An application built on top of COOL will
compile and run on any platform supporting COOL.

Audience 1.2 This manual is intended for use by programmers who have a working under-

standing of the C++ programming language as implemented by AT&T in release 2.0
and type system. Users must also understand the distinction between the concepts and
principles associated with overloaded operators and friend functions.

Features 1.3 The major features that COOL contributes to enhancing the C++ language and

program development capabilities are the following:

• An enhanced macro language that supports constant symbols, keyword and body
arguments, parameterized templates, and complex expression evaluation

• Parameterized templates that allow development of type-independent container
classes with support for multiple iterators

• Dynamic, user-defined packages implementing name spaces for symbols with
names, property lists, and values

• Polymorphic features derived from the Generic virtual base class that supports
is_type_of() run-time queries

• A multi-level exception handling mechanism that utilizes macros, symbols, and a
global error package and is similar in design to the Common Lisp Condition Han-
dling System

• A collection of classes implementing a wide range of useful data structures and
system interface facilities

The following paragraphs provide brief descriptions of each of these features, including
information on what to expect in the rest of this manual on the various classes, macros,
symbolic computing facilities, exception handling routines, and methodology that gov-
erns the implementation of COOL.

Printed on: Wed Apr 18 06:58:45 1990

Last saved on: Tue Apr 17 13:22:25 1990

Document: s1

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

